Sūkurys

Sūkuringumas yra matematinė sąvoka, naudojama skysčių dinamikoje. Ji gali būti siejama su skysčio "cirkuliacijos" arba "sukimosi" (tiksliau, vietinio kampinio sukimosi greičio) kiekiu.

Vidutinis sūkuringumas mažoje skysčio srauto srityje yra lygus cirkuliacijai Γ {\displaystyle \Gamma } {\displaystyle \Gamma }aplink mažos srities ribą, padalytai iš mažos srities ploto A.

ω a v = Γ A {\displaystyle \omega _{av}={\frac {\Gamma }{A}}} {\displaystyle \omega _{av}={\frac {\Gamma }{A}}}

Sąvokos prasme sūkuringumas skysčio taške yra riba, kai mažos skysčio srities plotas taške artėja prie nulio:

ω = d Γ d A {\displaystyle \omega ={\frac {d\Gamma }{dA}}} {\displaystyle \omega ={\frac {d\Gamma }{dA}}}

Matematiškai sūkuringumas taške yra vektorius ir apibrėžiamas kaip greičio kreivė:

ω → = → × v → . {\displaystyle {\vec {\omega }}={\vec {\nabla }}\times {\vec {v}}. } {\displaystyle {\vec {\omega }}={\vec {\nabla }}\times {\vec {v}}.}

Viena iš pagrindinių potencialaus srauto prielaidų yra ta, kad sūkuringumas ω {\displaystyle \omega } {\displaystyle \omega }yra lygus nuliui beveik visur, išskyrus ribinį sluoksnį arba srauto paviršių, kuris iš karto ribojasi su ribiniu sluoksniu.

Kadangi sūkurys - tai koncentruoto sūkuringumo sritis, nenulinis sūkuringumas šiuose konkrečiuose regionuose gali būti modeliuojamas sūkuriais.

Klausimai ir atsakymai

K: Kas yra vudu?


A: Sūkuringumas - tai skysčių dinamikoje vartojama matematinė sąvoka, susijusi su skysčio "cirkuliacijos" arba "sukimosi" (tiksliau, vietinio kampinio sukimosi greičio) kiekiu.

K: Kaip apskaičiuojamas sūkuringumas?


A: Vidutinis sūkuringumas mažoje skysčio srauto srityje yra lygus cirkuliacijai aplink mažos srities ribą, padalytai iš mažos srities ploto A. Matematiškai jį taip pat galima apibrėžti kaip greičio kreivę taške.

Klausimas: Ar yra kokia nors pagrindinė prielaida, susijusi su sūkuringumu?


A: Taip, viena iš pagrindinių potencialaus srauto prielaidos prielaidų yra ta, kad sūkuringumas yra lygus nuliui beveik visur, išskyrus ribinį sluoksnį arba srauto paviršių, iš karto ribojantį ribinį sluoksnį.

K: Kas atsitinka, kai yra sričių, kuriose sūkuringumas nenulinis?


A: Šiuos regionus galima modeliuoti sūkuriais, nes jie yra koncentruoto sūkuringumo regionai.

K: Ką reiškia Γ?


A: Γ reiškia cirkuliaciją aplink nedidelį regioną.

K: Ką reiškia ω?


A: ω reiškia vidutinį sūkuringumą mažame regione, taip pat greičio vektorių ir kreivę taške.

AlegsaOnline.com - 2020 / 2023 - License CC3